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Finding a new control parameter for magnetic domain wall �DW� motion in magnetic nanostructures is
important in general and in particular for the spintronics applications. Here, we show that a circularly polarized
magnetic field �CPMF� at gigahertz frequency �microwave� can efficiently drive a DW to propagate along a
magnetic nanowire. Two motion modes are identified: rigid DW propagation at low frequency and oscillatory
propagation at high frequency. Moreover, DW motion under a CPMF is equivalent to the DW motion under a
uniform spin current in the current perpendicular to the plane magnetic configuration proposed recently by
Khvalkovskiy et al. �Phys. Rev. Lett. 102, 067206 �2009��, and the CPMF frequency plays the role of the
current.
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Controlled manipulation of magnetic domain wall �DW�
propagation in nanowires has spurred intensive research
in recent years1–12 in nanomagnetism because of its fun-
damental interest and the potential impact in spintronic de-
vice technology. Both static magnetic fields1–4 and electric
currents5–12 can be the control parameters. However, their
control mechanisms are different, and they have different
advantages and disadvantages. Thus, finding any new control
parameter for DW motion should be of great interest.

Although it is known both theoretically13 and
experimentally14 that a microwave can be used to manipulate
the motion of single-domain magnetic particles �mac-
rospins�, a microwave was hardly thought to be an effective
control parameter for DW motion. In this paper, we show
that a circularly polarized magnetic field �CPMF� at giga-
hertz frequency �microwave� can efficiently drive a magnetic
DW to propagate along a nanowire at a high speed. Similar
to a spin-polarized current, a CPMF can generate both
Slonczewski-type and field-like spin-transfer torques �STTs�
inside a DW. Unlike the STTs generated by a spin-polarized
current, the field-like STT is much bigger than the
Slonczewski-type STT. Thus, a CPMF generates more useful
STT �Ref. 7� in comparison with that of a spin-polarized
current. Moreover, its driving mechanism is very different
from those of a static axial magnetic field and a spin-
polarized current.

In order to appreciate the CPMF-driven DW motion, let
us recall the driving mechanisms of a static axial magnetic
field and a spin-polarized current. A DW propagates along a
wire under a static magnetic field4 because the Zeeman en-
ergy must be released to compensate the dissipated energy
due to the nonexistence of a static DW in a static magnetic
field.15 An electric current, on the other hand, moves DWs by
the STT due to the transfer of spin angular momentum from
conduction electrons to local spins.5 A spin-polarized current
can transfer two types of torques to a local magnetization
M� =Msm� . One is the Slonczewski-type STT �Ref. 5� of bm�
� �m� �s�� �b-term�, where s� is the polarization direction of
the spin-polarized current. The other one is a field-like
torque6 of cm� �s� �c-term�. b and c are parameters roughly
proportional to current.5,6 The effects of b- and c-terms on
DW propagation are very different. b-term is incapable of

generating a sustained wall motion, except at very large cur-
rent, while c-term can drive a DW to propagate along the
carrier direction.7 Unfortunately, c-term is normally much
smaller than b-term.11 A large current density is needed to
achieve a technologically useful DW propagation velocity,9

but the associated Joule heating could affect device perfor-
mance. Thus, it should be interesting if one can generate a
large c-term �in comparison with b-term� either in a new
architecture or by using a new control parameter. One solu-
tion along the first line of the thinking is provided by Kh-
valkovskiy et al.12 who proposed a current perpendicular to
the plane magnetic configuration in a sandwiched magnetic
nanowire structure. Here we provide a solution along the
second line of the thinking.

We consider a head-to-head �HH� DW in a magnetic
nanowire whose easy axis is along the wire axis defined as
the z axis shown in Fig. 1. The motion of the magnetization,
M� =Msm� , is governed by the Landau-Lifshitz-Gilbert �LLG�
equation16

�m�

�t
= − �m� � h�ef f + �m� �

�m�

�t
, �1�

where h�ef f =− 1
�0

�U /�M� is the effective magnetic field that is

the variational derivative of the free-energy density U�M� �
with respect to magnetization M� , �=g�e� /2me is the gyro-
magnetic ratio, �0 is the vacuum magnetic permeability and
� is the phenomenological Gilbert damping constant16 which
measures dissipative effect. Equation �1� is a nonlinear par-
tial differential equation that can be solved exactly only in
some special cases.1,17
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FIG. 1. Dashed arrow denotes the damping torque Td on the
local spins �long arrows� when the DW plane moves around �indi-
cated by the curved arrow� the wire axis during synchronization.
Short arrow denotes torque Tp arising from the lag of DW motion
and the field.
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A macrospin can synchronize its motion with a CPMF. A
synchronized motion generates a damping field that forces
the spin to move perpendicularly to the synchronized motion,
leading to a dramatic effect of a CPMF on a macrospin.13,14

Thus, it is natural to study the CPMF effect on DW motion
since a DW may also synchronize its motion with a CPMF
due to the DW texture nature if the motion of its constitute
local spins are synchronized. To demonstrate that this can
indeed happen, let us study the motion of a HH DW in a
uniaxial wire under a CPMF h��t�=h0�cos �tx̂+sin �tŷ� with
frequency � and amplitude h0. The free-energy density
U�Mz� is a functional function of Mz, and the effective field
takes a form of h�ef f =h��t�+ f�Mz�ẑ+ 2A

�0Ms
2

�2M�

�z2 , where f is the
anisotropy field and the last term is the exchange field with
the exchange coefficient A. The physics is that DW synchro-
nize its motion with a CPMF so that DW plane rotates
around wire axis at angular velocity �. According to the
LLG equation �Eq. �1��, the precession motion around z axis
gives rise to a damping torque Td=��m� �

�m�
�t �=−�� sin �e��

�e�� is unit vector of � direction� shown in Fig. 1. Also, be-
cause of the lag of the DW motion with the field �� is the
angle between the DW plane and CPMF plane defined by h�
and z axis�, the field exerts a torque with � component Tp=
−��m� �h�ef f� ·e��=�h0 sin � shown in Fig. 1. Later analysis
�Eq. �5� derived later� shows that Tp always overwhelms Td
so that the HH DW propagates to the left along the wire �a
collective motion of spins along � direction corresponds to
the DW propagation along the wire�.

For the motion of a HH DW under the CPMF, it is con-
venient to use the rotation frame of

�x̂�

ŷ�

ẑ�
� = � cos �t sin �t 0

− sin �t cos �t 0

0 0 1
��x̂

ŷ

ẑ
� , �2�

where x̂�, ŷ�, and ẑ� are the unit vectors of Cartesian coordi-
nates in the rotation frame. m� becomes m� �
= �sin � cos 	 , sin � sin 	 , cos �� in the rotation frame,
where 	=−� is the azimuthal angle of m� in the rotation
frame which is related to azimuthal angle 
 in the laboratory
frame by 	=
−�t. Polar angle � is the same in the two
frames. The time derivatives of m� in the two reference
frames are connected to each other by �m�

�t = �m� �
�t −m� ���� , here

angular-velocity vector �� =�ẑ is assumed �Fig. 1�. Equation
�1� in this rotation frame becomes

�m� �

�t
= − �m� � � �h�ef f� +

�

�
m� � � �� −

��

�
	 + �m� � �

�m� �

�t
,

�3�

where the effective field is h�ef f� =h0x̂�+ f�cos ��ẑ�+ 2A
�0Ms

�2m� �
�z�2

that does not depend on time �in general, the field due to the
magnetic anisotropy depends on time in a rotation frame, but
it is time independent for the uniaxial wire�.

Equation �3� does not have any explicit time-dependent
term, and the original problem becomes a DW subjected to a
transverse field h0x̂�, a Slonczewski-type torque �b-term�
�m� �� �m� ���� �, and a field-like torque �c-term� m� ���� .

Thus a DW under a CPMF behaves like the DW under a
current-induced STT if one views �� as a spin-polarized cur-
rent. Unlike the STT from a real spin-polarized current,
c-term is much larger than b-term. Thus a CPMF is very
efficient in driving DW propagation along the wire. It should
be noticed that the equivalent spin-polarized current is uni-
formly applied to a DW, instead of spatially dependent spin-
polarized current related to �m�

�z inside a DW.6,7 Interestingly,
Eq. �3� is exactly the same as that in a recently studied
system12 of current-driven DW motion in a sandwiched long
and narrow spin valve, in which the magnetization of refer-
ence magnetic layer plays the role of field polarity �� . Thus a
DW of uniaxial wire under a CPMF is equivalent to the DW
in composite spin valves under a current.12

Early study12 on Eq. �3� showed that DW propagates like
a rigid body under small torques, corresponding to a perfect
synchronized motion with the CPMF in the current case. It is
noted that �� = �

� m� ���� is a nonconservative field since �m� �
��� =− 2�

� �� �0. In order to find out how the DW propaga-
tion velocity depends on the amplitude and the frequency of
the CPMF, we adopt the generalized analysis of Schryer and
Walker.1 It is required to first find the static DW solutions of
Eq. �3� at �� =0 �the case of a constant transverse field h�0�.
For the conventional uniaxial anisotropy U�cos ��=
− 1

2K cos2 �, a static DW centered at z�=Q exists with fol-
lowing DW profile �=��z�−Q� , 	=0, where18

sin ��z�� = sin �0 +
cos2 �0

cosh
 z�

�
cos �0� + sin �0

, �4�

where �0=sin−1��0Msh0 /K� is the tilted polar angle of two
domains due to transverse magnetic field h�0, and �
=�2A /K is the static DW width without external magnetic
field. Assume the profile of the moving DW is the same as
that of the static one, then the moving DW is given by Eq.
�4� with collective coordinates18–20 �Q ,	� being functions of
time. Substituting Eq. �4� into Eq. �3�, the equations for Q
and 	 are

	̇ = − � −
��h0

1 + �2sin 	 , �5�

Q̇ = −
� + 	̇

��1 − sin �0�
� . �6�

Solution of Eq. �5� with initial condition 	=0 is

cot
	

2
=
−

�c

�
−���c

�
	2

− 1coth
��c

2 − �2

2
t , � � �c

−
�c

�
−�1 − ��c

�
	2

cot
��2 − �c

2

2
t , � 
 �c,�

�7�

where �c=
��h0

1+�2 is the critical frequency that separates two
modes: 	 approaches exponentially a fixed value sin−1�
−� /�c� in a time scale of 1 /��c

2−�2 for ���c. This is the
fully synchronized motion. Since Tp= ��+ 1

� �� is always
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larger than Td=�� sin �, the HH DW propagates to the left
as mentioned early. 	 keeps rotating around z axis with a
period of 2� /��2−�c

2 and a variable velocity for �
�c,
corresponding to an incomplete synchronization. For �
��c, the steady DW propagation velocity is given by Eq. �6�
when 	̇=0 is reached,

� = Q̇�t → �� = −
��

��1 − sin �0�
. �8�

Similar to the low current velocity, DW propagation velocity
is linear in � as shown by the solid lines in Fig. 2 for low
frequency. For �
�c, the precession velocity of DW plane
change with time. According to Eq. �6�, DW velocity will
also change with time. Since the average angular velocity of
	 is �=��2−�c

2, the averaged DW velocity is

�̄ = −
� − ��2 − �c

2

��1 − sin �0�
� , �9�

monotonically decreasing with � shown by the solid curves
in Fig. 2 for large �. The results can also be understood from
the energy consideration.4 For ���c, the nonconservative
field does not do any work to the system for a rigid DW
propagation, and the energy dissipation must be compensated
by the energy released from the DW propagation.4 According
to Ref. 4, the DW velocity is proportional to DW width and
the axial field which is the frequency in the present case. For
�
�c, DW plane precess around the wire while it propa-
gates along the wire. The nonconservative field pumps en-
ergy to the system so that the system needs to release less
energy, corresponding to a low DW velocity shown in Eq.
�9�.

To test validity of our analytical results, we solve Eq. �1�
numerically for a uniaxial one-dimensional wire of magnetic
anisotropy U=− 1

2K cos2 �. We first scale time, length, en-

ergy density, and field amplitude in units of ��Ms�−1,
�A /�0Ms

2, �0Ms
2, and Ms, respectively, so that velocity is in

the unit of ��A /�0. We then adopt a standard arithmetic
Method of lines to discretize space with an adaptive time-
step control. The length of the wire is 100 and the mesh size
is 0.2. The density plot of mz in z-t plane determines the DW
position. The DW velocity is extracted from the slope of the
DW position line. We find that the DW position line is a
straight line at low frequency, and it becomes an oscillation
curve at high frequency.

The symbols in Fig. 2 are numerical data for K=8, �
=0.1 and various h0=3, 1, and 0.5. It is clear that h0 affects
DW velocity. The larger the h0 is, the higher the velocity will
be, as given by Eqs. �8� and �9� because the DW width is
increased by a factor 1 / �1−sin �0�. The agreement between
Eq. �8� �straight lines in Fig. 2 without any fitting param-
eters� and numerical results for low frequency are good.
Equation �9� �curves in Fig. 2� captures qualitatively the de-
cay feature for large frequency, but systematically smaller
than the numerical values. This should not be a surprise since
Eqs. �5� and �6� are derived from rigid DW assumption that,
strictly speaking, does not hold for �
�c. To further test our
assumptions for Eqs. �5� and �6�, we compare numerical val-
ues of �c / ��h0� with theoretical prediction of � / �1+�2�
�curve in the inset of Fig. 2�. The symbols �squares, circles,
and stars for h0=3, 1, and 0.5, respectively� in the inset of
Fig. 2 are numerical data for various � that compares well
with the theoretical prediction.

It is predicted and confirmed21,22 that a DW motion with
its plane precessing around wire axis can generate an elec-
tromotive potential of �

e
d

dt between the two sides of the DW,

where d

dt is the precession velocity of the DW. However, a

rigid body propagation along the wire will not generate an
electromotive force. A naive application of this theory to our
DW motion seems lead to zero electromotive force in the

FIG. 3. DW propagation velocity � as a function of CPMF fre-
quency � for �=0.1, h0=3, and K1=8. Symbols are results of nu-
merical simulations for K2=0 �squares�, 1 �triangles�, and 3 �hexa-
gons�, respectively. Solid curve corresponds to the theoretical result
for K2=0.

FIG. 2. DW velocity versus CPMF frequency with �=0.1 and
K=8. Symbols are numerical data for field amplitude h0=3
�squares�, 1 �circles�, and 0.5 �stars�. Solid curves are the theoretical
results of Eqs. �8� and �9�. Inset: ratio �c /�h0 versus �. Solid curve
is the theoretical formulation �

1+�2 as we get.
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rotation frame and nonzero electromotive force in the labo-
ratory frame. This obvious contradiction is due to the neglect
of a Coriolis field of B� =− ��

� along wire axis in the rotation
frame. Thus, a conduction electron that virtually moves
across the DW will experience an static potential gain of
Es= 2�� ·��

� = ��
e , exactly what is predicted by Niu’s theory22 in

the laboratory frame.
A realistic magnetic wire will not be completely symmet-

ric around wire axis. In order to show the robustness of the
physics discussed here, we consider a biaxial anisotropy field
h�an= 1

�0Ms
�K1mzẑ−K2mxx̂�, K1 and K2 describe the anisotro-

pies along the easy axis and hard axis, respectively. Gener-
ally speaking, the synchronization would not be perfect in
the presence of K2 because local spin needs to climb over an
extra energy barrier when it follows the motion of a CPMF.
Figure 3 shows the numerical results of velocity-frequency
dependence of DW with biaxial anisotropies, where the gen-
eral features are very similar to those in Fig. 2. It compares
well with Eqs. �8� and �9�. The magnitude of the peak
velocity can be estimated by using materials parameters

of Co: Ms=1.4�106 A /m, A=4�10−11 J /m,
K1=5.2�105 J /m3, and �=0.1. We find the peak velocity
of �=21.5 m /s at the critical frequency �c=0.17 GHz for
h0=100 Oe.

In conclusion, CPMF at gigahertz frequency is an effi-
cient control parameter for DW motion. Two propagation
modes are identified. Under a low frequency ����c�, a DW
propagates like a rigid body at a constant velocity that in-
creases linearly with the CPMF frequency. At a high fre-
quency ��
�c�, DW propagation speed is oscillatory, and
its time-averaged value decreases with the frequency. For a
uniaxial wire, a DW under a CPMF can be mapped to the
DW under STT due to uniform spin-polarized current. In the
map, the CPMF frequency plays the role of the spin-
polarized current.
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